1、程序的基本格式
原文位置
原文位置
先介绍二条伪指令:
原文位置
EQU ——标号赋值伪指令
原文位置
ORG ——地址定义伪指令
原文位置
PIC16C5X在RESET后指令计算器PC被置为全“1”,所以PIC16C5X几种型号芯片的复位地址为:
原文位置
PIC16C54/55:1FFH
原文位置
PIC16C56:3FFH
原文位置
PIC16C57/58:7FFH
原文位置
原文位置
原文位置
一般来说,PIC的源程序并没有要求统一的格式,大家可以根据自己的风格来编写。但这里我们推荐一种清晰明了的格式供参考。
原文位置
TITLE This is …… ;程序标题
原文位置
;--------------------------------------
原文位置
;名称定义和变量定义
原文位置
;--------------------------------------
原文位置
F0 EQU 0
原文位置
RTCC EQU 1
原文位置
PC EQU 2
原文位置
STATUS EQU 3
原文位置
FSR EQU 4
原文位置
RA EQU 5
原文位置
RB EQU 6
原文位置
RC EQU 7
原文位置
┋
原文位置
PIC16C54 EQU 1FFH ;芯片复位地址
原文位置
PIC16C56 EQU 3FFH
原文位置
PIC16C57 EQU 7FFH
原文位置
;-----------------------------------------
原文位置
ORG PIC16C54 GOTO MAIN ;在复位地址处转入主程序
原文位置
ORG 0 ;在0000H开始存放程序
原文位置
;-----------------------------------------
原文位置
;子程序区
原文位置
;-----------------------------------------
原文位置
DELAY MOVLW 255
原文位置
┋
原文位置
RETLW 0
原文位置
;------------------------------------------
原文位置
;主程序区
原文位置
;------------------------------------------
原文位置
MAIN
原文位置
MOVLW B‘00000000’
原文位置
TRIS RB ;RB已由伪指令定义为6,即B口
原文位置
┋
原文位置
LOOP
原文位置
BSF RB,7 CALL DELAY
原文位置
BCF RB,7 CALL DELAY
原文位置
┋
原文位置
GOTO LOOP
原文位置
;-------------------------------------------
原文位置
END ;程序结束
原文位置
注:MAIN标号一定要处在0页面内。
原文位置
原文位置
原文位置
2、程序设计基础
原文位置
1) 设置 I/O 口的输入/输出方向
原文位置
PIC16C5X的I/O 口皆为双向可编程,即每一根I/O 端线都可分别单独地由程序设置为输入或输出。这个过程由写I/O 控制寄存器TRIS f来实现,写入值为“1”,则为输入;写入值为“0”,则为输出。
原文位置
MOVLW 0FH ;0000 1111(0FH)
原文位置
输入 输出
原文位置
TRIS 6 ;将W中的0FH写入B口控制器,
原文位置
;B口高4位为输出,低4位为输入。
原文位置
MOVLW 0C0H ; 11 000000(0C0H)
原文位置
RB4,RB5输出0 RB6,RB7输出1
原文位置
2) 检查寄存器是否为零
原文位置
如果要判断一个寄存器内容是否为零,很简单,现以寄存器F10为例:
原文位置
MOVF 10,1 ;F10→F10,结果影响零标记状态位Z
原文位置
BTFSS STATUS,Z ;F10为零则跳
原文位置
GOTO NZ ;Z=0即F10不为零转入标号NZ处程序
原文位置
┋ ;Z=1即F10=0处理程序
原文位置
3) 比较二个寄存器的大小
原文位置
要比较二个寄存器的大小,可以将它们做减法运算,然后根据状态位C来判断。注意,相减的结果放入W,则不会影响二寄存器原有的值。
原文位置
例如F8和F9二个寄存器要比较大小:
原文位置
MOVF 8,0 ;F8→W
原文位置
SUBWF 9,0 ;F9—W(F8)→W
原文位置
BTFSC STATUS,Z ;判断F8=F9否
原文位置
GOTO F8=F9
原文位置
BTFSC STATUS,C ;C=0则跳
原文位置
GOTO F9>F8 ;C=1相减结果为正,F9>F8
原文位置
GOTO F9<
原文位置
F9 ;C=0相减结果为负,F9<F8
原文位置
┋
原文位置
4) 循环n次的程序
原文位置
如果要使某段程序循环执行n次,可以用一个寄存器作计数器。下例以F10做计数器,使程序循环8次。
原文位置
COUNT EQU 10 ;定义F10名称为COUNT(计数器)
原文位置
┋
原文位置
MOVLW 8
原文位置
MOVWF COUNT LOOP ;循环体
原文位置
LOOP
原文位置
┋
原文位置
DECFSZ COUNT,1 ;COUNT减1,结果为零则跳
原文位置
GOTO LOOP ;结果不为零,继续循环
原文位置
┋ ;结果为零,跳出循环
原文位置
5)“IF……THEN……”格式的程序
原文位置
下面以“IF X=Y THEN GOTO NEXT”格式为例。
原文位置
MOVF X,0 ;X→W
原文位置
SUBWF Y,0 ;Y—W(X)→W
原文位置
BTFSC STATUS,Z ;X=Y 否
原文位置
GOTO NEXT ;X=Y,跳到NEXT去执行。
原文位置
┋ ;X≠Y
原文位置
6)“FOR……NEXT”格式的程序
原文位置
“FOR……NEXT”程序使循环在某个范围内进行。下例是“FOR X=0 TO 5”格式的程序。F10放X的初值,F11放X的终值。
原文位置
START EQU 10
原文位置
DAEND EQU 11
原文位置
┋
原文位置
MOVLW 0
原文位置
MOVWF START ; 0→START(F10)
原文位置
MOVLW 5
原文位置
MOVWF DAEND ;5→DAEND(F11)
原文位置
LOOP
原文位置
┋
原文位置
INCF START,1 ;START值加1
原文位置
MOVF START,0
原文位置
SUBWF DAEND,0 ;START=DAEND ?(X=5否)
原文位置
BTFSS STATUS,Z
原文位置
GOTO LOOP ;X<5,继续循环
原文位置
┋ ;X=5,结束循环
原文位置
7)“DO WHILE……END”格式的程序
原文位置
“DO WHILE……END”程序是在符合条件下执行循环。下例是“DO WHILE X=1”格式的程序。F10放X的值。
原文位置
X EQU 10
原文位置
┋
原文位置
MOVLW 1
原文位置
MOVWF X ;1→X(F10),作为初值
原文位置
LOOP
原文位置
┋
原文位置
MOVLW 1
原文位置
SUBWF X,0
原文位置
BTFSS STATUS,Z ;X=1否?
原文位置
GOTO LOOP ;X=1继续循环
原文位置
┋ ;X≠1跳出循环
原文位置
8) 查表程序
原文位置
查表是程序中经常用到的一种操作。下例是将十进制0~9转换成7段LED数字显示值。若以B口的RB0~RB6来驱动
LED的a~g线段,则有如下关系:
原文位置
原文位置
设
LED为共阳,则0~9数字对应的线段值如下表:
原文位置
原文位置
十进数 线段值 十进数 线段值
原文位置
0 C0H 5 92H
原文位置
1 C9H 6 82H
原文位置
2 A4H 7 F8H
原文位置
3 B0H 8 80H
原文位置
4 99H 9 90H
原文位置
原文位置
PIC的查表程序可以利用子程序带值返回的特点来实现。具体是在主程序中先取表数据地址放入W,接着调用子程序,子程序的第一条指令将W置入PC,则程序跳到数据地址的地方,再由“RETLW”指令将数据放入W返回到主程序。下面程序以F10放表头地址。
原文位置
MOVLW TABLE ;表头地址→F10
原文位置
MOVWF 10
原文位置
┋
原文位置
MOVLW 1 ;1→W,准备取“1”的线段值
原文位置
ADDWF 10,1 ;F10+W =“1”的数据地址
原文位置
CALL CONVERT
原文位置
MOVWF 6 ;线段值置到B口,点亮
LED 原文位置
┋
原文位置
CONVERT MOVWF 2 ;W→PC TABLE
原文位置
RETLW 0C0H ;“0”线段值
原文位置
RETLW 0F9H ;“1”线段值
原文位置
┋
原文位置
RETLW 90H ;“9”线段值
原文位置
9)“READ……DATA,RESTORE”格式程序
原文位置
“READ……DATA”程序是每次读取数据表的一个数据,然后将数据指针加1,准备取下一个数据。下例程序中以F10为数据表起始地址,F11做数据指针。
原文位置
POINTER EQU 11 ;定义F11名称为POINTER
原文位置
┋
原文位置
MOVLW DATA
原文位置
MOVWF 10 ;数据表头地址→F10
原文位置
CL
RF POINTER ;数据指针清零
原文位置
┋
原文位置
MOVF POINTER,0
原文位置
ADDWF 10,0 ;W =F10+POINTER
原文位置
┋
原文位置
INCF POINTER,1 ;指针加1
原文位置
CALL CONVERT ;调子程序,取表格数据
原文位置
┋
原文位置
CONVERT MOVWF 2 ;数据地址→PC
原文位置
DATA RETLW 20H ;数据
原文位置
┋
原文位置
RETLW 15H ;数据
原文位置
如果要执行“RESTORE”,只要执行一条“CL
RF POINTER”即可。
原文位置
10) 延时程序
原文位置
如果延时时间较短,可以让程序简单地连续执行几条空操作指令“NOP”。如果延时时间长,可以用循环来实现。下例以F10计算,使循环重复执行100次。
原文位置
MOVLW D‘100’
原文位置
MOVWF 10
原文位置
LOOP DECFSZ 10,1 ;F10—1→F10,结果为零则跳
原文位置
GOTO LOOP
原文位置
┋
原文位置
延时程序中计算指令执行的时间和即为延时时间。如果使用4MHz振荡,则每个指令周期为1μS。所以单周期指令时间为1μS,双周期指令时间为2μS。在上例的LOOP循环延时时间即为:(1+2)*100+2=302(μS)。在循环中插入空操作指令即可延长延时时间:
原文位置
MOVLW D‘100’
原文位置
MOVWF 10
原文位置
LOOP NOP
原文位置
NOP
原文位置
NOP
原文位置
DECFSZ 10,1
原文位置
GOTO LOOP
原文位置
┋
原文位置
延时时间=(1+1+1+1+2)*100+2=602(μS)。
原文位置
用几个循环嵌套的方式可以大大延长延时时间。下例用2个循环来做延时:
原文位置
MOVLW D‘100’
原文位置
MOVWF 10
原文位置
LOOP MOVLW D‘16’
原文位置
MOVWF 11
原文位置
LOOP1 DECFSZ 11,1
原文位置
GOTO LOOP1
原文位置
DECFSZ 10,1
原文位置
GOTO LOOP
原文位置
┋
原文位置
延时时间=1+1+[1+1+(1+2)*16-1+1+2]*100-1=5201(μS)
原文位置
11) RTCC计数器的使用
原文位置
RTCC是一个脉冲计数器,它的计数脉冲有二个来源,一个是从RTCC引脚输入的外部信号,一个是内部的指令时钟信号。可以用程序来选择其中一个
信号源作为输入。RTCC可被程序用作计时之用;程序读取RTCC寄存器值以计算时间。当RTCC作为内部计时器使用时需将RTCC管脚接VDD或VSS,以减少干扰和耗电流。下例程序以RTCC做延时:
原文位置
RTCC EQU 1
原文位置
┋
原文位置
CL
RF RTCC ;RTCC清0
原文位置
MOVLW 07H
原文位置
OPTION ;选择预设倍数1:256→RTCC
原文位置
LOOP MOVLW 255 ;RTCC计数终值
原文位置
SUBWF RTCC,0
原文位置
BTFSS STATUS,Z ;RTCC=255?
原文位置
GOTO LOOP
原文位置
┋
原文位置
这个延时程序中,每过256个指令周期RTCC寄存器增1(分频比=1:256),设芯片使用4MHz振荡,则:
原文位置
延时时间=256*256=65536(μS)
原文位置
RTCC是自振式的,在它计数时,程序可以去做别的事情,只要隔一段时间去读取它,检测它的计数值即可。
原文位置
12) 寄存器体(BANK)的寻址
原文位置
对于PIC16C54/55/56,寄存器有32个,只有一个体(BANK),故不存在体寻址问题,对于PIC16C57/58来说,寄存器则有80个,分为4个体(BANK0-BANK3)。在对F4(FSR)的说明中可知,F4的bit6和bit5是寄存器体寻址位,其对应关系如下:
原文位置
原文位置
原文位置
Bit6 Bit5 BANK 物理地址
原文位置
0 0 BANK0 10H~1FH
原文位置
0 1 BANK1 30H~3FH
原文位置
1 0 BANK2 50H~5FH
原文位置
1 1 BANK3 70H~7FH
原文位置
原文位置
当芯片上电RESET后,F4的bit6,bit5是随机的,非上电的RESET则保持原先状态不变。
原文位置
下面的例子对BANK1和BANK2的30H及50H寄存器写入数据。
原文位置
例1.(设目前体选为BANK0)
原文位置
BSF 4,5 ;置位bit5=1,选择BANK1
原文位置
MOVLW DATA
原文位置
MOVWF 10H ; DATA→30H
原文位置
BCF 4,5
原文位置
BSF 4,6 ;bit6=1,bit5=0选择BANK2
原文位置
MOVWF 10H ;DATA→50H
原文位置
从上例中我们看到,对某一体(BANK)中的寄存器进行读写,首先要先对F4中的体寻址位进行操作。实际应用中一般上电复位后先清F4的bit6和bit5为0,使之指向BANK0,以后再根据需要使其指向相应的体。
原文位置
注意,在例子中对30H寄存器(BANK1)和50H寄存器(BANK2)写数时,用的指令“MOVWF 10H”中寄存器地址写的都是“10H”,而不是读者预期的“MOVWF 30H”和“MOVWF 50H”,为什么?
原文位置
让我们回顾一下指令表。在PIC16C5X的所有有关寄存器的指令码中,寄存寻址位都只占5个位:fffff,只能寻址32个(00H—1FH)寄存器。所以要选址80个寄存器,还要再用二位体选址位PA1和PA0。当我们设置好体寻址位PA1和PA0,使之指向一个BANK,那么指令“MOVWF 10H”就是将W内容置入这个BANK中的相应寄存器内(10H,30H,50H,或70H)。
原文位置
有些设计者第一次接触体选址的概念,难免理解上有出入,下面是一个例子:
原文位置
例2:(设目前体选为BANK0)
原文位置
MOVLW 55H
原文位置
MOVWF 30H ;欲把55H→30H寄存器
原文位置
MOVLW 66H
原文位置
MOVWF 50H ;欲把66H→50H寄存器
原文位置
以为“MOVWF 30H”一定能把W置入30H,“MOVWF 50H”一定能把W置入50H,这是错误的。因为这两条指令的实际效果是“MOVWF 10H”,原因上面已经说明过了。所以例2这段程序最后结果是F10H=66H,而真正的F30H和F50H并没有被操作到。
原文位置
建议:为使体选址的程序清晰明了,建议多用名称定义符来写程序,则不易混淆。
原文位置
原文位置
例3:假设在程序中用到BANK0,BANK1,BANK2的几个寄存器如下:
原文位置
原文位置
BANK0 地址 BANK1 地址 BANK2 地址 BANK3 地址
原文位置
A 10H B 30H C 50H · 70H
原文位置
· · · · · · · ·
原文位置
· · · · · · · ·
原文位置
原文位置
A EQU 10H ;BANK0
原文位置
B EQU 10H ;BANK1
原文位置
C EQU 10H ;BANK2
原文位置
┋
原文位置
FSR EQU 4
原文位置
Bit6 EQU 6
原文位置
Bit5 EQU 5
原文位置
DATA EQU 55H
原文位置
┋
原文位置
MOVLW DATA
原文位置
MOVWF A
原文位置
BSF FSR,Bit5
原文位置
MOVWF B ;DATA→F30H
原文位置
BCF FSR,Bit5
原文位置
BSF FSR,Bit6
原文位置
MOVWF C ;DATA→F50H
原文位置
┋
原文位置
原文位置
程序这样书写,相信体选址就不容易错了。
原文位置
13) 程序跨页面跳转和调用
原文位置
下面介绍PIC16C5X的程序存储区的页面概念和F3寄存器中的页面选址位PA1和PA0两位应用的实例。
原文位置
(1)“GOTO”跨页面
原文位置
例:设目前程序在0页面(PAGE0),欲用“GOTO”跳转到1页面的某个地方
原文位置
KEY(PAGE1)。
原文位置
STATUS EQU 3
原文位置
PA1 EQU 6
原文位置
PA0 EQU 5
原文位置
┋
原文位置
BSF STATUS,PA0 ;PA0=1,选择PAGE页面
原文位置
GOTO KEY ;跨页跳转到1页面的KEY
原文位置
┋
原文位置
KEY NOP ;1页面的程序
原文位置
┋
原文位置
(2)“CALL”跨页面
原文位置
例:设目前程序在0页面(PAGE0),现在要调用——放在1页面(PAGE1)的子程序DELAY。
原文位置
┋
原文位置
BSF STATUS,PA0 ;PA0=1,选择PAGE1页面
原文位置
CALL DELAY ;跨页调用
原文位置
BCF STATUS,PA0 ;恢复0页面地址
原文位置
┋
原文位置
DELAY NOP ;1页面的子程序
原文位置
┋
原文位置
注意:程序为跨页CALL而设了页面地址,从子程序返回后一定要恢复原来的页面地址。
原文位置
(3)程序跨页跳转和调用的编写
原文位置
读者看到这里,一定要问:我写源程序(.ASM)时,并不去注意每条指令的存放地址,我怎么知道这个GOTO是要跨页面的,那个CALL是需跨页面的? 的确,开始写源程序时并知道何时会发生跨页面跳转或调用,不过当你将源程序汇编时,就会自动给出。当汇编结果显示出:
原文位置
X X X(地址)“GOTO out of Range"
原文位置
X X X(地址)“CALL out of Range"
原文位置
这表明你的程序发生了跨页面的跳转和调用,而你的程序中在这些跨页GOTO和CALL之前还未设置好相应的页面地址。这时应该查看汇编生成的.LST文件,找到这些GOTO和CALL,并查看它们要跳转去的地址处在什么页面,然后再回到源程序(.ASM)做必要的修改。一直到你的源程序汇编通过(0 Errors and Warnnings)。
原文位置
(4)程序页面的连接
原文位置
程序4个页面连接处应该做一些处理。一般建议采用下面的格式: 即在进入另一个页面后,马上设置相应的页面地址位(PA1,PA0)。 页面处理是PIC16C5X编程中最麻烦的部分,不过并不难。只要做了一次实际的编程练习后,就能掌握了。
原文位置
原文位置
原文位置
原文位置
原文位置
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。